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Abstract

We examine the connections between maximum cardinality edge matchings
in a graph and optimal solutions to the associated linear program, which we
call maximum f-matchings (fractional matchings). We say that a maximum
matching M separates an odd cycle with vertex set S, if M has no edge with
exactly one end in S. An'odd cycle is separable if it is separated by at
least one maximum matching. We show that (1) a graph G has a maximum
f-matching that is integer, if and only if it has no separable odd cycles;
(2) the minimum number q of vertex-disjoiﬁt odd cycles for which a maximum
f-matching has fractional components, equals the maximum number s of vertex-
disjoint odd cycles, separated by a maximum matching; (3) the difference
between the cardinality of a maximum f-matching and that of a maximum matching
in G is one half times s; (4) any maximum f-matching with fractional
components for a minimum number s of vertex-disjoint odd cycles defines a
maximum matching obtainable from it in s steps; and (5) if a maximum
f-matching has fractional components for a set Q of odd cycles that is not
minimum, there exists another maximum f-matching with fractional components
for a minimum-cardinality set S of odd cycles, such that SCQ, |Q\s| is

even, and tHe cycles in Q\S are pairwise connected by alternating patis.
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1. Introduction

Let G = (V,E) be an undirected graph with iVl = m and |E| = n, let
A be the vertex-edge incidence matrix of G, and eP the p-vector of 1l's.

Consider the problem of finding a maximum-cardinality edge-matching in G
EM(G) max{enx‘Ax Sepn x ¢{0,1}™}
and the associated linear program

LEM(G) max{enxle <e, x>0}

We will call EM(G) the matching problem, and LEM(G) the fractional
matching, or shortly the f-matching problem, A feasible solution to EM(G) will
be called a matching, a feasible solution to LEM(G), an f-matching. Clearly,
every matching is an f-matching.

We wish to investigate the relationship between maximum matchings
and maximum f-matchings in a graph G, i.e., between optimal solutions to
EM(G) and LEM(G). For a problem P, we denote by v(P) the value of (an
optimal solution to) P. For vertex sets S, T & V, we denote by (S5,T) the
set of edges of G with one end in S and the other in T, and by < S > the

subgraph of G induced by S. Also, S = V\S.

An alternating path relative to a matching M is a path whose edges
alternate between M and M. An M-augmenting path is an alternating path whose
end vertices are distinct and are not incident with M. A matching M in G is

of maximum cardinality if and only if G contains no M-augmenting path (Berge [2]).




If G has no odd cycles (1:e., is bipartite), A is totally unimodular

and every basic solution to LEM(G) is integer, i.e.,

1) v(LEM(G)) = v(EM(G)).

If G is not bipartite, LEM(G) has fractional basic solutions, and the
convex hull of feasible integer solutions, i.e., the matching polytope, is
defined (together with the constraints of LEM(G)) by the inequalities

: (2) -z as(sl-1, et 8l >3 et e
ec(S,S)

(Edmonds [3]). Any basic feasible solution to LEM(G) has components equal

1
to 0,1 or 7 (Balinski [1]). Furthermore, if X, = % then e belongs to some

odd cycle C, and Xe = %, ¥ feC,

Let M be a2 maximum matching in G. If G is bipartite, M is a maximum

f-matching; but the converse is false, as illustrated by the graph in figure 1,

where the maximum matching shown in heavy lines is also a maximum f-matching,

in spite of the presence of a 5-cycle.

Fig. 1 Fig. 2

It would seem that whether & maximum matching M is also a maximum

f-matching, depends on whether M covers all vertices of every odd cycle; but

The matching in the graph of figure 2 leaves a vertex of an

this is not so.
On the other hand, the

odd cycle exposed, yet it is a maximum f-matching.




-

maximum matching M in the grai:ti of figure 3a covers all vertices of the only
odd cycle of the graph, yet it is not a maximum f-matching, as shown by the

f-matching M’ of figure 3b: lMI = 3, while the value of M’ is 3 % .

2 1
2

N |y
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2

Fig. 3a Fig. 3b

2. Separable 0dd Cycles

The key concept for understanding the connection between maximum

ﬁutchings and maximum f-matchings is the following.
Let M be a maximum matching and C an odd cycle in G, and let S be

the vertex set of C. We will say that M separates C if

(3) MN(S,S) = 9 .

An odd cycle which is separated by at least one maximum matching in G
will be called separable. If C is a separable odd cycle in G, with vertex

1 and Mz

are maximum matchings in < S > and in < s> respectively., If C is a nonseparable

set S, then G has a maximum matching of the form M = HIUMZ’ where M

odd cycle with vertex set S, then every maximum matching contains at least
k + 1 edges incident with S.
Theorem 1. G has a maximum f-matching that is integer if and only if

G has no separable odd cycle.




Proof. Necessity. Let M be & maximum matching in G which separates an odd

cycle C with vertex set S, and |S| = 2k + 1. Since M is maximal and MN (S,5) = @,

M contains k edges of (S,S). Let x be the incidence vector of M, and define X by

-% eeC
i. =0 ee(s,S)\C
;e ecE\(S,S)

! . Clearly, x is a feasible solution to LEM(G), and

v(LEM(G)) > eni
= M) -k + 2+ D > vEueE),

hence G has no maximum f-matching that is integer.
Sufficiency. Let v(LEM(G)) > v(EM(GC)), and let X be a maximum f-matching
in G having fractional components for a minimum number of odd cycles, say

Cl....,Cq. For { = 1,...,q, let S, be the vertex set of C,, with |Sil -2, +1,

q
Clearly, $if'1s.1 =@, ¥1,j¢{l,...,q}. Further, let S = U S;. The components
i=1

i. of X such that i. = 1 define a matching M’ in < S > which is clearly
maximum, or else x itself could not be a maximum f-matching.

Fori=1,,..,q, let M

¢ be a set of ki mutually nonadjacent edges of Ci’
i.e., a maximum matching in < si > . Then the edge set
!

is a matching in G such that nn(si.'s'i) =@, i=1,...,q.
Next we prove by contradiction that M is of maximum cardinality, which

implies that the odd cycles cl,...,cq are all separable and thus completes the

proof of the theorem.




Suppose M is not maximum. Then there exists an M-augmenting path

_P-4n G. Moreover, we claim that the maximum matchings Mi in < S1 >

i=1,...,9, which are not unique, can always be chosen such that P has no

E edge in common with any of the cycles Ci, i=1,...,9. For suppose P contains
an edge (u,w)eCi for some ie{l,...,q}. Since Ci has only one vertex exposed

with respect to M, say t, at least one of the end vertices of the path P, say v,

? ' is not contained in Ci' Of the vertices u and w, let w be the one lying

between u and v in P. Then the maximum matching M, in < Si > can be replaced

i

by ﬁ;, containing those ki mutually nonadjacent edges of C

w rather than t. This replaces the matching M in G by

i that leave exposed

e at, ) uf«fi :

such that \ﬁl = lMl. The portion of P between t and w can theg‘pe removed,

— i ~
and the remaining portion, between w and v, is an M-augmenting path P not

containing (u,w). If P still has some edge in common with Ci, the above

procedure can be repeated. After a finite number of applications of this

procedure, we obtain a matching M in G such that |M| = |M|,

~ Yl ~ ~
= e UM
M=M LJMIU U q

(where each ﬁ; is a maximum matching in < Si >), and an ﬁ-augmenting path

P, not containing any edge of any Ci, i=1,...,9q. This proves that w.l.o.g.,

the path P can be assumed to have no edge in common with any C,, 1 = 1,...,q.

1!
If we now reverse the assignment of edges in P with respect to M, we
obtain a matching M* in G, such that |M*| = |M| + 1. But from M* one can’

construct an f-matching % in G that has fractional components for fewer odd

cycles than X, contrary to our assumptions on X.

BTSRRI,




To construct ;, first note that since P contains no edge of any Ci

and is an alternating path, P contains no edge of < S >, and the only vertices
of P contained in S are one, or possibly both, end vertices of P. The fact

that P has at least one vertex in S follows from the maximality of the matching

M/ =MN(S,S) in <S5 > .

Let v1 and vj be the two end vertices of P, We consider two cases,

Case 1. v, ¢S, for some ie{l,...,q}, vjtS. Let e),...,e,, ., be the edges of

i

T T . e m—-

Ci, and let e, and &K+l be incident with vye Define x by
1 -.ie ecP
& 1 ee{ez,ea,...,eZk}
. :
0 ec{el,e3,...,e2k+1}
t ie otherwise é

Case 2. v,¢S and vj‘sj for some i,je{l,...,q]}. Let e, r=1,...,2%k +1,

and d', s =1,...,2k, + 1, be the edges of C and C

respectively, where e
’

3 ]

are incident with v g and d1 and d2k1+1 are incidgpt with vj.

2\\cnd 'Zk +1

mmM\

11 "{ez"a""’°2k1}LJ{35’44{""d2kj]

Xq ﬁ o “{‘1"3"°°.'°2ki+13U {dl’d3""’d2kj+i]

x otherwise.

In Case 1, x has fractional components for q - 1 odd cycles, and

e;; = eni + % , since the reversal of edge assignments in P adds 1 to, while

the change of values for eec1 subtracts % from, the value of eni. In case 2,




B Y
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e —

e e —

x has fractional components for q - 2 odd cycles, and en; = eni. In ‘both
cases the existence of x contradicts our assumption that X is a maximum
f-matching which has fractional components for a minimum number (q) of odd
cycles.

Thus M is a maximum cardinality matching in G, which separates the odd
cycles Cl,...,Cq.H

The graphs in figures 1 and Z both have maximum f-matchings that are
integer, since in each case the unique maximum matching shown in heavy lines
does not separate the unique odd cycle of the‘graph, hence the latter has
no separable odd cycle. The graph of figure 3, on the other hand, has a
maximum matching (other than the one shown in figure 3a) which separates the
odd cycle: it contains two edges of the cycle, and a third edge not incident
with any vertex of the cycle. Therefore there exists no maximum f-matching
that is integer.

It is interesting to note that if LEM(G) has an integer optimum,

it does not follow that the linear program dual to LEM(G), namely the
fractional vertex covering problem LVC(G), also has an integer optimum. In
other words, the absence of a separable odd cycle in G does not guarantee that
the cardinality of a maximum edge matching is equal to that of a minimum vertex
cover. For ex;mple the graph of figure 4 has no separable odd cycle and
therefore it has a maximum f-matching gf value 3 that is integer. On the

other hand, the cardinality of a minimum vertex cover is 4, and the fractional

vertex cover that assigns value % to every vertex v is the only one with value 3.

N
e
l:s\
N
o
-t N~
N e

Fig. 4a Fig. 4b




-8-

The proof of Theorer 1 is constructive in the sense that it gives a
procedure for obtaining a maximum matching in an arbitrary graph G from a
maximum f-matching in G that satisfies an additional requirement (having
fractional components for a minimum number of odd cycles). It turns out that
this procedure can be reversed, to obtain a maximum f-matching from a maximum
matching that, again, satisfies an additional requirement: to separate a
maximum number of disjoint odd cycles. (Two odd cycles are disjoint if they
have no common vertex.) The next Corollary and its proof state this relation-
ship more precisely.

For a maximum matching M, let o(G,M) be the maximum number of disjoint odd

cycles separated by M. For a maximum f-matching x, let Y(G,x) be the number

of odd cycles for which x has fractional components. Finally, let /% be the

set of maximum matchings, and X the set of maximum f-matchings in G. -]
Corollary 1.1.

max o(G,M) = min Y(G,x).
Mén xe%

Proof. In the sufficiency part of the proof of Theorem 1, a maximum

f-matching X such that

Y(G,%X) = q = min y(G,x) {
xe %

was used to construct the matching defined by (4), which was shown to be

maximum in G, and which separates q cycles of G. We claim that q = max a(G,M).
MR

For suppose not, then there exists a maximum matching M* in G that separates

-

P>q+ 1 odd cycles Cl,...,Cp. Fori =1,...,p, let Si be the vertex set of

P -
¢, Is,| = 2k, + 1, let S = US,, and let x be the incidence vector of M,
1=1 :




I T e

"B

~

Then setting 5; = % for qeci, 1.= 1 eiae s P> X, = ;; otuerwise, defines an
f-matching X such that en; = lM*l + % P. On the other hand, ex = |M| +-% q,
where M is the maximum matching defined by (4). Since IMl = ‘M%‘ and p>q + 1.
this contradicts the assumption that X is a maximum f-matching in G.||
Next we turn to the relationship between the value of a maximum
f-matching and that of a maximum matching in an arbitrary graph G. Let A(G)

denote the difference of these two values, i.e.,
(5) A(G) = v(LEM(G)) - v(EM(G)).

It is not hard to derive bounds on A(G). If C is an odd cycle with
’
vertex set S, clearly A(K S >) = % . Since in the absence of odd cycles in

G, A(G) = 0, if Y(G) is the number of odd cycles in G, it is easy to see that
1
) NORSMOF

This also yields a bound on A(G) independent of the number of odd

cycles. Indeed, since a cycle has at least 3 edges, Y(G) < % lEI, i.e.,

) 2@ <¢ 2|,

a bound which is attained for any graph G which is the union of triangles.
Further, since % IEl < v(EM(G)) obviously holds for any graph G, from

(7) one also has

v(LEM(G)) _ 3
(8) VEM@G)) 2 °

/ The bounds (6), (7) and (8) are more or less trivial, The proof of

" Theorem 1 yields a considerably stronger bound, namely the actual value of A(G).




We define the separation number ¢(G) of a graph G as the maximum number

of disjoint odd cycles separated by any maximum matching in G, i.e.,

o(G) = max o(G,M).
Mdn

Corollary 1.,2. A(G) = % a(G).

Proof. Let X be a maximum f-matching in G such that y(G,%X) = o(G).
Then the matching M defined by (4) with respect to # is maximum, as shown in
the proof of Theorem 1. Clearly, [M| = en§ - % a(G).||

The difference between the value of a maximum f-matching and that of
a maximum matching can be considerably smaller than % Y(G), the bound given
by (6), sincé the separation number ¢(G) of a graph can be much smaller than

the number Y(G) of its odd cycles. Figure 5 shows a graph G with o(G) = 0

and v(G) = 2p, where p can be made arbitrarily large (in the figure, p = 5).

The unique maximum matching, which is also a maximum f-matching in G, is

shown in heavy lines.
LT
h\“\\;‘\\

A

Fig. 5

For SCV, we denote by N(S) the set of vertices in S adjacent to

some vertex in S. For veV, we denote by I(v) the set of edges incident with

v in G.




e

Corollary 1.3. Every graph G has a maximum f-matching X such that

1
0 ¥ ecci 3 i=1,...,0(G)
9) fce = 0 k2 ee(Si,V)\Ci 3 i=1,...,006)
Oorl ¥ ec(S,s)
and
(10) e =l ¥ veN(S) ,

ecI(v) ©
where Cl,...,Co(G) is a maximum-cardinality set of disjoint separable odd

cycles in G, S, is the vertex set of C

4 i i=1,...,0(G), and S = SIU...US

o(G)’

Conversely, every feasible solution X of LEM(G) that satisfies (9)
is a8 maximum f-matching in G, and also satisfies (10).

Proof. From Corollary 1.1, G has a maximum f-matching X such that
¥(G,X) = o(G). Such an X clearly satisfies (9). Conversely, if X satisfies
(9), then the matching M defined by (4) relative to X is maximum in G, hence
e = |M| +2 0(6) = v(EM(G)) + 3 0(6) and thus % is maximal.

To show by contradiction that every maximum f-matching that satisfies

(9) also satisfies (10), suppose (10) is violated for some veN(S)., Let ueS

1
be the vertex of S adjacent to v, and let el,...,e2k1+1 be the edges of Ci’
with e and e2ki+1 incident with u.

Since (10) is violated for v, either ie =0, ¥ ecI(v), or ie = % for

*
some e, €I(v) and ie =0, ¥ eeI(v)\[e*}. In the first case, the vector x defined by

1 e = (u,v)

1 ee{ez,ea,...,eZki}

e
"

0 ec{el,e3,...,e2ki+1]

otherwise

L1
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is an f-matching with e;; = eni + % . In the second case, x defined by

x, = ;;, ¥ ecE\f{e, ], ;;* = 0, is an f-matching with en; = eni, but with
fractional components for Y(G,X) - 1 odd cycles. In both cases the outcome
contradicts the assumption that X is a maximum f-matching with fractional
components for a minimum number of odd cycles.”

While every graph has a maximum f-matching X satisfying (9) (and hence

(10)), it is not true that every (basic) maximum f-matching satisfies (9). 1In

case of alternative optima there may be only one that satisfies the condition of
Corollary 1.3. The graph G of figure 4, for instance, has the maximum f-qatching
shown in 4a, which satisfies (9), since G has no separable odd cycle; but it

also has the one shown in 4b, which does not satisfy the cendition of Corollary

12 35

3. Generating Maximum Matchings from Maximum f-Matchings

Let X be a basic maximum f-matching, let

C(x) = {cl,...,cq}

= %, ¥ eeC

be the set of odd cycles C, such that x ¢

. , and for i =1,...,q,

let S1 be the vertex set of Ci'
We will denote by 7 (X) the family of matchings associated with %,

introduced in the proof of Theorem 1, i,e., the set of all matchings of the form
4
M-MU%U“Jmf

where M’ = {eeElie =1}, and for 1 = 1,...,q, M, i¢ a maximum matching in < S, > .

We define two operations on the components of %X associated with certain

edge sets of G.
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By complementing on E'SE, we mean replacing ie by i; »1- ie’ ¥ ecE’.

By alternate rounding on C, ¢C(x), ¢, we mean

= lepeeney b
i

i }, and ié =1,

replacing ie’ eeC,, by X «" % es{el, €508

2k1+1
ee{ez,...,eZki}.

From the results of the previous section it follows that one way of
finding a maximum matching in a graph is to find a8 maximum f-matching x with
a minimum-cardinality C(X) and then use alternative rounding on the odd cycles
in C(X) to generate a matching Me¥ (X).

Remark 1. The matchings in F(X) are of maximum cardinality if and
only if C(X) is of minimum cardinality.

Proof. From Corollaries 1.1 and 1.2.]]

Next we address the problem of finding a maximum f-matching x with a

minimum-cardinality C(X).

Lemma 1. If X is a basic maximum f-matching and q = |C(X)| > 0(G), then
q = 0(G) (mod 2).

Proof. Let Me#(X). Then eni = || +% q, and from Corollary 1.2,
eni = v(EM(G)) + % g(G). Since both \M\ and v(EM(G)) are integer, subtracting

the second equation from the first one produces

3(a - 6(6)) =0 (mod 1)

and multiplication by 2 yields the congruence in the Lemma.”

We define an alternating path relative to an f-matching X as a path

whose edges e alternate between ie = 0 and ie = 1. We say that a path P

connects two odd cycles Cl, Cz, if P connects a vertex of C, to a vertex of C2‘

1
A vertex v of G is exposed relative to x if ie = 0 for all edges e incident with v.




e TO————
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Theorem 2. Let X be a basic maximum f-matching such that q = |C(§)| > o(G).

Then G contains o = %(q - 0(G)) vertex-disjoint alternating paths Pk relative

to x, each of which connects two odd cycles C, » C, eC (X), and the cycles
k

3

k

Cik, Cj » k=1,...,a, are all distinct., Furthermore, alternate rounding on
k

the odd cycles Cik, Cj » and complementing on the paths P, k = 1,...,qa,
k

produces a maximum f-matching x with |C(§)| = 5(G).

Proof. Let M* be a maximum matching in G and M¢Z%(X). Since \M\ = enﬁ - %
and [Mx| = e X - -;- o(G) (Corollary 1.2), |Mx| - |M| = %(q - 0(G)) = o. It is
therefore known (see Theorem 1 of [4]) that G contains g vertex-disjoint

M-augmenting paths, ﬂl""’"a'

We show by contradiction that each m,_connects two cycles, C

» C, ¢Z(X),
e L &K

1k # jk. Suppose this is false; then at least one end-vertex of Mo Say u, is

- q =
in S, where S = U Si. Since < S > contains no M'-augmenting path (or else x
i=1
would not be a maximum f-matching), ﬂk is incident with some vertex of S. Let v

be the first vertex of S encountered when e is traversed starting from u, and

let né be the subpath of m connecting u to v. Clearly, né is an alternating
path relative to x. Then using alternate rounding on Ci' the cycle whose
vertex set Si contains v, and complementing on ﬂé, produces an f-matching x
such that e;; = eni + %, contrary to the assumption that x is maximum.

This proves that both end-vertices of ™ belong to S. Further, since
L' %

containing the two end-vertices of m, are distinct - hence so are the two

cycles C1 » Cj ; and for the same reason (that each S
k k

each Si contains only one vertex exposed relative to M, the sets S

1 contains only one

exposed vertex) the o pairs of odd cycles Cik’ Cj , connected by the g paths
k

m are all distinct.

q




Now using alternate rounding on the 2o odd cycles connected by the
paths e reduces the value of the f-matching for every such cycle by %, f.8.,

for every pair of cycles C1 - Cj connected by a path Mo by 1. On the other
k k
hand, using complementing on the paths u increases the value of the f-matching

by 1 for every path Thus the alternate rounding and complementing produces

e
an f-matching X of the same value as X, hence maximum; and it reduces the number
of odd cycles for which the f-matching has fractional components, by

1 '
2a = q - 3 0().|

Two cycles C,, C, with vertex sets S,, S, will be called adjacent, if

1 7] it
j such that (u,v)e¢E. Since the edge (u,v) is an

alternating path relative to X, we have

there exists ueSi and veS

Corollary 2.1. 1If two odd cycles Ci’ Cj ¢C(X) are adjacent, with u eCi, veCj

and (u,v)¢E, then alternate rounding on Ci and Cj and complementing on (u,v),
produces a maximum f-matching x such that cx)| = le@)| - 2.
Also, from Theorem 2 we have

Corollary 2.2. If |C(X)| > o(G), there exists a maximum f-matching x

such that C(x) CC(X) and |C(X)| = 0(G).

Theorem 2 can be used to obtain from an arbitrary basic maximum f-matching,
one with fractional components for a minimum number of odd cycles. The
alternating paths relative to X can be found by a scanning and labeling
procedure of the type used for finding augmenting paths relative to a matching.
The complexity of such a scanning and labeling routine is O(mz) for each path
found (where m = |V|), and since there are g = %(q - 0(G)) paths to be.found,

: obtaining from X a maximum f-matching x such that |C(;)| = g(G) requires at most

O(mz-a) steps.
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The problem of finding a maximum f-matching in an arbitrary graph G is
equivalent to the problem of finding a maximum matching in a bipartite graph

G= (VltJvz, EllJEz), defined as follows. For every vertex vicv, & has a pair

il
edges(vil, vjz)eE1 and (viZ’ vjl)eEz. We say that the vertices Vi1 and Vg

of vertices v eVl and vizcvz. For every edge (Vi’ vj)eE, G has a pair of

as well as the edges (vil’ v,,) and (viz, le)’ are copies of each other. If

j2
we associate the 0-1 vectors y1 and y2 with the edge sets El and Ez respectively,

then a matching (§1, 92) in G defines an f-matching X in G via the rule

-1 if i 1
-~ - Al - A2 -
X 0 if P 0

.2 Al 62
ify;, =0, y;,=1l,ory =1,y =0,

N =

Obviously, a maximum matching M in G then defines a maximum f-matching
of cardinality %lMl in G, Figure 6 shows a graph G with a maximum f-matching,

and the associated graph G with the corresponding maximum matching.

11 12
1 6 21 22
0 ¢
1 g i s 31 32
0 4 S L2
41 42
2
51 52
61 62
71 72
Fig. 6a Fig. 6b

et o———
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A bipartite graph of the above type was introduced by Edmonds and
Pulleyblank (see Nemhauser and Trotter [6]) as an equivalent for the fractional
vertex packing problem, but the equivalence obviously holds for the fractional
matching problem LEM(G) as well.

Thus finding a maximum f-matching in an arbitrary graph G with n vertices
is reduced to finding a maximum matching in a bipartite graph G with 2n vertices.

/

Hopcroft and Rarp [5] give an easy to implement O(ns 2) algorithm for finding

8 maximum matching in a bipartite graph. An algorithm of the same complexity

(o(nS/Z

)), but much harder to implement, for maximum matching in an arbitrary
graph, has been proposed by Even and Kariv [4]. Thus the worst case behavior
of algorithms for maximum matching in a bipartite graph seems to be no better
than that of their counterparts for arbitrary graphs. Nevertheless, the worst
cise is not the only, and perhaps not the most relevant one. The need for
handling odd cycles in a matching algorithm for arbitrary graphs either by
shrinking or by special labeling rules, make these algorithms considerably
more difficult to implement than matching algorithms for bipartite graphs.
Thus the idea of using the above described equivalence has some merit, even

though it could not improve the worst-case bound. However, working out the

details of an algorithm based on this approach is beyond the scope of our paper.
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